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Numerical Investigation of Dynamic Stall of an Oscillating Wing

J. A. Ekaterinaris*
NASA Ames Research Center, Moffett Field, California 94035

The unsteady three-dimensional flowfield over an oscillating wing is investigated with the numerical solution of
the compressible, time-dependent, Reynolds-averaged Navier-Stokes equations. Spatial discretization is performed
with a third-order accurate, upwind-biased, vertex-based, finite volume scheme. An alternative direction implicit,
iterative scheme is used for the time integration. The high Reynolds number turbulent flow behavior is modeled
with a one-equation turbulence model. The effect of subiterations, time step and grid density on the accuracy of
the computed solutions is investigated. It is found that scaling of the time step with the angular velocity of the
motion produces accurate solutions at a reduced computational cost. The computational domain over an aspect
ratio 5 wing with rounded tip and NACA-0015 airfoil sections is discretized with a single-block grid. The light stall
flowfield over the wing oscillating in a subsonic freestream with a mean angle of attack of 11 deg and an amplitude
of 4.2 deg is computed. The structure of the separated, unsteady flowfield is investigated and comparisons with
available experimental data are performed.

Nomenclature
a^Q = freestream speed of sound
c = chord length
e^ = total energy
F,G,H = inviscid flux vector
q = conservative flow variable vector
S = thin-layer approximation of various terms in normal

direction
u,v,w = Cartesian velocity components

Introduction

T HE objective of this investigation is to demonstrate the ability
of a recently developed compressible flow solver to simulate

the unsteady, three-dimensional unsteady flow effects and gener-
ation of dynamic stall over an oscillating wing. The phenomenon
of dynamic stall, investigated by McCroskey1 and McCroskey and
Pucci2 for oscillating airfoils, continues to be a subject of interest in
both experimental and theoretical research. An extensive review of
experimental and theoretical investigations of dynamic stall is given
in Ref. 3. The physical mechanisms involved with dynamic stall are
not yet fully understood in spite of their importance to helicopter
flight and other aerodynamic applications.

The two-dimensional, low-speed, laminar dynamic stall over
airfoils has been the subject of several experimental4'5 and
numerical6"8 investigations. These investigations provide some in-
sight to the physical mechanisms leading to dynamic stall, but
they are not relevant to flowfields of practical interest. For higher
freestream speeds, compressibility and turbulent flow behavior
play an important role in the generation of dynamic stall and
the development of the unsteady flowfield. Recent experimental
investigations9-10 have shown that compressibility effects cannot be
ignored for freestream speeds above M^ w 0.3. In Ref. 10 it was
also shown that for a freestream speed in the range of M^ « 0.4,
multiple shock formation at the leading edge (possibly influenced
by the transitional nature of the boundary layer in this region) sig-
nificantly affects the development of the unsteady flowfield during
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a pitchup or oscillatory motions. These experimental studies were
conducted at Reynolds numbers between 540,000 and 800,000.

Numerical studies11'12 at the same flow conditions as Ref. 9
have also concluded that transitional/turbulent flow behavior may
lead to the development of leading-edge separation bubbles even
for steady flows at fixed angles of incidence. Recent numerical
investigations12"15 indicate that leading-edge flow transition may
also be of importance for unsteady flows at higher Reynolds num-
bers of about 4 x 106. Numerical prediction of low Reynolds number
transitional flows, however, involves uncertainties.11'12 As a result,
numerical solutions of such free to transition, unsteady, complex
flowfields has had limited success. Fully turbulent unsteady, sep-
arated flows are still difficult to predict, but some of the recently
developed turbulence models16"18 show some promise. In this pa-
per the ability of numerical methods to predict three-dimensional
dynamic stall in subsonic flow is investigated. To avoid uncertain-
ties associated with the prediction of laminar/transitional/turbulent
flows, an experiment where the surface flow has been tripped to
ensure fully turbulent boundary layer is simulated.

The two-dimensional dynamic stall over airfoils with fully tur-
bulent, tripped boundary layer has been investigated numerically
in Refs. 14 and 19. In Ref. 19 the ability of popular algebraic,20'21

half-equation,22 as well as one-equation16'17 turbulence models in
predicting the light and deep stall regimes has been tested. In Ref. 14
one-,16'17 and two-equation18'23'24 turbulence models are tested for
the same flow conditions. It was found that turbulence models which
involve boundary-layer length scales in their formulation are not
suitable for the prediction of unsteady flows with large separation.
The main reason is that a boundary-layer edge cannot be defined
without ambiguity for flows with large separation. A feature of tur-
bulence models that improves their performance and makes them
more suitable for the prediction of dynamic stall is their ability to
predict separation. It was generally observed14 that none of the tur-
bulence models could predict accurately the hysteresis effect during
the downstroke. In addition, turbulence models which suppress sep-
aration, such as the k—€ model, do not predict increase of drag and
pitching down moment during the downstroke and lead to prema-
ture flow reattachment. Among the models tested in Refs. 14 and
19 the predictions obtained with the Baldwin-Earth16 (B-B) one-
equation turbulence model, even though far from being perfect, were
in reasonably good agreement with the experiment. In addition, the
ability of this model to predict wing tip vortices for fixed angle-of~
attack flows has been tested in Ref. 25, and good agreement with
the experiment was obtained. Therefore, in the present investiga-
tion the three-dimensional unsteady flowfield is computed with the
Baldwin-Barth one-equation turbulence model.

Three-dimensional dynamic stall is of interest in helicopter
aircraft and missile aerodynamics. However, few experimental
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investigations have focused on the three-dimensional flowfield over
oscillating and pitching wings. The unsteady, laminar, incompress-
ible flowfield over a pitching wing of aspect ratio 2 has been investi-
gated in Ref. 26. This laminar flow has been simulated numerically in
Ref. 27. An extensive experimental investigation of unsteady flow-
fields over swept and unswept wings for a higher Reynolds number
compressible flow has been reported in Refs. 28 and 29. In these in-
vestigations the effects of freestream speed and reduced frequency
have been also considered. However, the experimental Reynolds
number is relatively low and transitional flow behavior reported in
Refs. 28 and 29 may introduce additional ambiguities in the applica-
tion of numerical techniques. In a recent experimental investigation
of dynamic stall of an oscillating untwisted wing30 the boundary
layer was tripped at the leading edge. The oscillation amplitude was
kept fixed to 4.2 deg and the effects of variation of the mean os-
cillation angle were investigated. Measurements were obtained for
wings with both flat and rounded tip geometries. This experiment
provides a good database for testing the ability of numerical meth-
ods and turbulence models to predict unsteady turbulent flows and
dynamic stall.

In the present investigation numerical solutions for oscillatory
motions of the untwisted wing measured in Ref. 30 are obtained.
A single-block grid is used for the discretization of the wing with
a rounded tip. Essential details of the numerical grid are given in
the next section. The upwind-biased numerical scheme used for the
solution is described. Convergence tests for unsteady computations
and grid refinement studies are presented first. The effects of time
step and grid density on the accuracy of the computed solutions
are investigated for two-dimensional flow conditions. Comparisons
with available experimental data for the three-dimensional flow of
the oscillating aspect ratio 5 wing are shown, and the development
of the unsteady flowfield is analyzed.

Numerical Implementation
The thin-layer approximation of the conservative form of the com-

pressible, Reynolds-averaged, Navier-Stokes equations for body-
fitted coordinate system (f, 77, £) is used. These equations are
as follows:

upwinding scheme. The numerical fluxes for a third-order accurate,
vertex-based, upwind-biased scheme are given by

dtq + c = Re~l3nS (1)

here q = [p, pu, pv, pw, e\T . In Eqs. (1) all geometrical dimen-
sions are normalized with the wing chord length c; the density p is
normalized with the freestream density p^; the Cartesian velocity
components (u, v,w) of the physical domain are normalized with
the freestream speed of sound a^ ; and e is the total energy normal-
ized with Pootf^.

The following upwind-biased, factorized, iterative, implicit nu-
merical scheme is used to compute the mean flow:

C,r., -

-Gf

-S"

F" , ..)+*, (of .i-i,j,*/ 1\ i,j

(2)

In this equation, hf = Ar/A£, etc. and A* = (9F/9g), etc. are
the flux Jacobean matrices, respectively. The quantities Fj + i/2,;,*,
GI,J + 1/2,*, Hjjj+i/2, and £,•,;,*+ 1/2 are inviscid and viscous numer-
ical fluxes, respectively.

The inviscid fluxes F, G, and H are evaluated using Osher's31

+ 2AF+(g,.M,

/ fM, g,+Ut) + 2AF-(gl+1.M, (3)

here F is the first-order accurate numerical flux for Osher's scheme31

given by

•i.M (4)

where Fq = F+ + F~, F± = (3F/3Q)±, and AF± are the cor-
rections to obtain high-order accuracy. Two intermediate points are
introduced32 between i and / + 1 in order to evaluate the integral in
Eq. (4). These intermediate points define three subpaths along which
the integral is evaluated. Limiting of the high-order discretizations
is obtained by modifying the fluxes AF±. The gradient of an en-
tropy function V(Q) — —p log(/?/px) is used to switch the order of
accuracy at regions of extrema, and the limited fluxes are obtained
as it is described in Ref. 32.

For the linearization of the left-hand side terms, the flux Jacobean
matrices A and B are evaluated by the Steger-Warming33 flux-vector
splitting. Newton iterations to convergence within each time step are
incorporated to reduce linearization and factorization errors and to
enhance the time accuracy of the numerical solution. The approx-
imation to Qn+{ at each subiteration is the quantity Qp. It will be
shown that, typically, two subiterations are sufficient to drop the
residuals two orders of magnitude during the Newton iteration pro-
cess. The viscous fluxes Stj^+i/i are computed with central dif-
ferences. The boundary conditions are specified explicitly. On the
wing surface the velocities are set equal to the surface velocity, and
the density and pressure are evaluated from the interior by extrap-
olation. All of the inflow and outflow boundary data are obtained
with one-dimensional Riemann invariant extrapolation.

The same numerical scheme was used for the computation of
two-dimensional unsteady flows over oscillating airfoils in Refs. 14
and 34. Central difference numerical schemes were used in Refs. 19
and 35 for the computation of two-dimensional unsteady flows over
oscillating airfoils. It was found that upwind-biased schemes,14'34

even though more computationally intensive, provide an advantage
for the solution of unsteady flows because they have no dependence
on specified numerical dissipation parameters and they appear to
have less grid sensitivity compared to central difference schemes.

Results
Two oscillation cycles are computed for the unsteady solutions.

The first cycle, which contains the transients of the restart from a
steady solution, is not shown. It was verified that during the second
cycle a time-periodic response is obtained and that the third cycle is
identical to the second cycle. The accuracy and convergence of the
numerical scheme are tested first for two-dimensional flow over an
infinite span wing. These solutions are computed first with a base-
line 181 x 5 x 7 1 point C type grid with five identical planes along
the spanwise direction. The distance of the first point from the wing
surface is 0.00001 chord lengths. Periodic conditions are imposed
on the first and last spanwise planes. Grid refinement studies are
performed with a 181 x 5 x 121 and a 231 x 5 x 121 point grid.
For the first refined grid, only the resolution along the normal di-
rection is increased and the distance of the first point from the wing
surface is 0.000005 chord lengths. For the second grid, the suction
side streamwise grid resolution is also doubled. Two-dimensional
measured data obtained in Ref. 30 for light and deep stall are used
to validate computed quasi-three-dimensional solutions for the infi-
nite span wing. The flow is computed at the same freestream speed
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Fig. 1 Effect of subiterations on convergence, A/oo = 0.299, a(0 = 11
deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 X 106.
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Fig. 2 Effect of subiterations on the computed loads, M^ = 0.299, a(0
= 11 deg + 4.2 deg sin(fl, k = 0.1, and Rec = 1.99 x 106.

MOO = 0.299 and Reynolds number Rec = 1.99 x 106 as the exper-
iment. The boundary layer in the experiment is tripped, and fully
turbulent solutions are computed. Only for this two-dimensional
flow, in addition to the solutions computed with the one-equation
model,16 a solution with the algebraic Baldwin-Lomax eddy vis-
cosity model20 is also obtained. Two-dimensional solutions are less
computationally intensive and can serve as test case for numerical
parameters, such as number of subiterations and time step.

The convergence rates of the Lmax norms of the residuals based
on density are shown in Fig. 1. In this figure convergence rates
achieved with one subiteration and three subiterations for solutions
computed with the one-equation model as well as the convergence
achieved for the solution computed with the algebraic model and
one subiteration are shown. Good convergence is obtained for all
computations which are performed with 10,000 time steps per cycle.
This number of time steps corresponds to a time step Ar = 0.01 or
a maximum Courant number of about 700. Two to three orders of
magnitude higher convergence is obtained when three subiterations
are employed. For all cases, during the unsteady solution the resid-
uals show considerable variation in contrast to quasisteady residual
variation, but they remain at a low level. The computed lift drag
and pitching moment coefficients obtained from these solutions are
compared with the experiment in Fig. 2. The solution computed

o Experiment, Piziali
— Computation, 181x71 grid
— Computation, 181x121 grid

0.06 i — Computation, 231x121 grid

6 8 10 12 14

Angle of Attack, deg.

Fig. 3 Effect of grid refinement on the computed pitching moment,
Moo = 0.299, o(0 = 11 deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 X 106.

1 N = 10000, 1 subiteration2 N = 10000, 2 subiterations
3 N = 10000, 3 subiterations4 N = 16000, 1 subiteration
5 N = 24000, 1 subiteration

10 o Ji/2
Cycle Phase Angle

Fig. 4 Effect of subiterations and time step on convergence, MOO
0.299, o(0 = 15 deg + 4.2 deg sin(Q, k = 0.1, and Rec = 1.99 X 106.

with the algebraic model predicts reasonably well the loads during
the upstroke. However, it fails to predict separation and yields some
discrepancies during the downstroke. It is observed that subitera-
tions do not appear to have a significant effect on the accuracy of
the computed loads for this case with limited flow separation.

The effect of grid refinement on the convergence and accuracy
of the solution is considered next. Grid refinement is performed
first in the normal direction with a l 8 1 x 5 x ! 2 1 point grid. A
231 x 5 x 121 point grid with double resolution on the suction
side is the finest grid. The refined grid solutions are computed with
10,000 time steps per cycle and one subiteration. The convergence
rates achieved on the refined grids (not shown here) are similar to
the rate achieved for the baseline grid. The computed lift and drag
from both refined grids (not shown here) are in good agreement with
the baseline grid predictions. The pitching moment is more sensitive
to changes of the surface pressure. The pitching moment hysteresis
loops obtained from the solutions with different grid density indicate
little grid sensitivity (Fig. 3).

The effect of subiterations and time steps per oscillation cycle
on the accuracy of the computed solutions is further investigated
for an oscillatory flow around a 15-deg mean angle and 4.2-deg
amplitude. For this mean oscillation angle deep stall develops, the
unsteady flowfield shows more separation, and nonlinear effects are
more pronounced. In Refs. 14 and 19 it was found that a higher
grid resolution is required to resolve massive flow separation during
the downstroke. For the sake of computational efficiency the base-
line grid is used to conduct numerical convergence tests. For this
case, only the Baldwin-Earth model is used. The convergence rates
achieved for one, two, and three subiterations are shown in Fig. 4.
As expected, a significantly higher convergence rate is obtained for
more subiterations. In the same figure, the solutions obtained with
16,000 and 24,000 time steps per cycle and one subiteration are
shown. A similar convergence rates with the solution obtained with
10,000 time steps per cycle is achieved. Comparisons of the com-
puted loads (Fig. 5) show that the accuracy of the solutions does
not improve significantly with subiterations. An increase of time
steps per cycle, however, or a reduction of the time step appears
to improve the predictions because the measured extreme values of
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Fig. 5 Effect of subiterations and time step on the computed loads,
MOO = 0.299, a(0 = 15 deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 X 106.
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Fig. 6 Effect of scaled time step on convergence, M^ = 0.299, a(f) =
11 deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 x 106.

drag and pitching moment are approximated more closely by the
solution with 24,000 time steps per cycle. Previous investigations14

have also suggested that a large unsteady solution for the deep stall
case shows small sensitivity at the downstroke.

Numerical solutions with 5000 time steps per cycle have shown
that the accuracy of the solution deteriorates even for the light stall
case although a converged solution is still obtained. The solution
does not improve, however, when 24,000 time steps per cycle are
used. On the other hand, the convergence rates obtained with a dif-
ferent number of time steps and one subiteration show that higher
convergence is obtained at the low and high incidences during the
cycle when the motion is much slower compared to the instant the
wing passes through the mean angle of incidence with a high speed.
This is an indication that an accurate solution may be still obtained
with a higher time step for the parts of the cycle when the motion
is slow whereas the time step is low enough when the wing mo-
tion is around the mean angle of incidence. The time during the
oscillation cycle, therefore, is scaled with the angular velocity as
t(a)) = t{l + cos[(cw/<wmax)(7r/2)]}, where &>max is the maximum
angular velocity obtained at the quarter and three-quarter period of
the oscillation. This time scaling yields a large time step for the slow
motion during the cycle and smaller time step for the faster parts
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Fig. 7 Effect scaled time step on the computed loads, M
= 15 deg + 4.2 deg sin(f), k = 0.1, and Rec = 1.99 x 106.

= 0.299, a(t)

Fig. 8 Grid over the aspect ratio 5 wing.

of the cycle. The convergence rate and the computed loads for the
oscillatory motion with 4.2-deg amplitude and 11-deg mean-angle
where the flow is mildly separated, obtained with a time step scaled
with the angular velocity, are compared with the experiment and
the solution obtained with 10,000 steps and constant time step in
Figs. 6 and 7, respectively. Figure 6 shows that the convergence rate
achieved with the scaled time step is more uniform. The computed
loads (Fig. 7) are in quite good agreement with the ones obtained
with 10,000 iterations and constant time step. When the time step is
scaled the cycle is completed with approximately 7000 iterations,
which corresponds to savings of 30%.

A single block 181 x 51 x 71 point, C-H type grid along the
streamwise £, spanwise 77, and normal £ directions, respectively, is
used to discretize the flow domain over the aspect ratio 5 wing. The
distance of the first point from the wing surface is 0.00001 chord
lengths. Along the streamwise direction 120 points are on the wing
and 31 points on each side of the wake. Along the spanwise di-
rection 37 points are on the wing surface. The rounded wing tip is
represented with 15 grid lines. The far-field boundaries are approx-
imately 16 chord lengths away from the wing surface. The wing
surface and field grid is shown in Fig. 8. At the wing root chord
periodic boundary conditions are applied. At the wake cuts at the
trailing edge and the wing tip, simple averaging of the flow variables
is performed. The inflow and outflow boundary data are obtained
by simple one-dimensional Riemann invariant extrapolation.

The numerical tests for the infinite span wing provide confi-
dence for the convergence characteristics and time step and the
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Fig. 9 Comparison of the computed and measured loads aty/s = 0.47,
MOO = 0.299, a(0 = 11 deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 X 106.
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Fig. 10 Comparison of the computed and measured loads aty/s = 0.80,
Moo = 0.299, a(0 = 11 deg + 4.2 degsin(0,k = 0.1, and/tec = 1.99 X 106.

grid resolution requirements of the numerical method. The three-
dimensional solutions, therefore, are obtained without subiterations.
Results for two-dimensional flow test cases have shown that the ac-
curacy of the solution for the deep stall case improves only when
24,000 time steps per cycle are used. The solution over the wing is
carried out with 16,000 time steps per cycle because a more severe
grid stretching at the tip region results in higher Courant numbers
and a time step decrease is required to achieve approximately the
same Courant number for the three-dimensional solution as for the
two-dimensional test case. The time step is not scaled by the wing
angular velocity, but it is kept constant throughout the cycle. Grid
refinement has shown little difference in the computed solution for
the light stall case. Therefore, for the sake of computational effi-
ciency the baseline 181 x 71 grid resolution is used to represent the
two-dimensional wing sections along the span.

The light stall case of Ref. 30, a(t) = 11 deg + 4.2 deg sin(0
is computed for the same flow conditions as in the experiment
(Moo = 0.299, k = 0.1, and Rec = 1.99 x 106). The computed
loads at approximately midspan y/s = 0.47 are compared with the
experiment in Fig. 9. The flow at this location is essentially two di-
mensional, and the agreement with the experiment is very good. The
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0.04

6 8 10 12 14 16
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Fig. 11 Comparison of the computed and measured loads aty/s = 0.98,
Moo = 0.299, a(0 = 11 deg + 4.2 deg sin(0, k = 0.1, and Rec = 1.99 x 106.

a = 12.0 up

Fig. 12 Surface flow pattern at a = 12 deg up, a = 14 deg up, a = 15.2
deg, a = 14 deg down, and a = 12 deg down, MOO = 0.299, a(0 = 11
deg + 4.2 deg sin(0, k = 0.01, and Rec = 1.99 x 106.

lift hysteresis (Fig. 9a) is in perfect agreement with the experiment
during the upstroke and indicates that a larger flow separation and
later reattachment is obtained during the downstroke. This behavior
is attributed to the turbulence model and is also observed in Fig. 2 as
well as in Refs. 14 and 19 for two-dimensional flows. The computed
drag hysteresis (Fig. 9b) is in good agreement with the experiment.
The computed pitching moment hysteresis (Fig. 9c) indicates that at
the initial part of the downstroke a larger separation is predicted. At
midspan it is expected that the flow is essentially two dimensional.
Comparison of Fig. 9c with Figs. 2c and 3, however, shows that
the three-dimensional measurements at midspan differ from their
two-dimensional counterpart.

At the 80% span location where the three-dimensional effects
become important, the computed solutions are compared with the
available experimental data in Fig. 10. The computed lift hysteresis
is in perfect agreement with the experiment throughout the cycle.
The numerical solution correctly captures the drop in lift (notice the
origin shift of the vertical scale in Fig. lOa) caused by the wing tip
downwash also obtained in the experiment. The computed drag and
pitching moment hysteresis loops are also in fairly good agreement
with the experiment for this location. The unsteady load comparison
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at the wing tip y/s = 0.98 is shown in Fig. 11. The computation
closely follows the experimental trends but fails to show the same
quantitative agreement observed at the y/s = 0.80 span location.
These discrepancies are attributed to inadequate grid resolution at
the tip region and the deficiency of the turbulence model to model the
wing tip vortex. In Ref. 25 it was shown that even for a steady flow
very high grid density and a high-order accurate scheme are needed
to accurately capture the tip vortex for a steady flow situation.

The development of the surface flow pattern and the flowfield is
shown in Fig. 12 for a = 12 deg up, a = 14 deg up, a = 15.2
deg, a = 14 deg down and a = 12 deg down. Surface particle
traces are used to represent the surface flow. During the upstroke
the surface flow remains attached, and flow reversal is obtained at
the peak angle of the cycle a = 15.2 deg. During the downstroke
large flow reversal is observed.

Conclusions
An upwind-biased iterative flow solver has been developed and

utilized to compute unsteady flowfields over oscillating wings. The
effects of subiterations, time step, and grid refinement on the conver-
gence rate and the accuracy of the solutions have been investigated.
It was found that accurate solutions may be obtained without subit-
erations and with a reasonable number of time steps per cycle. For
mildly separated flows a scaling of the time step with the wing
angular speed helped to obtain accurate solutions at a reduced com-
putational cost. The unsteady three-dimensional flowfield over an
oscillating aspect ratio 5 wing has been computed. A recently devel-
oped one-equation turbulence model was found to be sufficient for
capturing the main features of the high Reynolds number turbulent
flow behavior.
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